Delta1 expression during avian hair cell regeneration.

نویسندگان

  • J S Stone
  • E W Rubel
چکیده

Postembryonic production of hair cells, the highly specialized receptors for hearing, balance and motion detection, occurs in a precisely controlled manner in select species, including avians. Notch1, Delta1 and Serrate1 mediate cell specification in several tissues and species. We examined expression of the chicken homologs of these genes in the normal and drug-damaged chick inner ear to determine if signaling through this pathway changes during hair cell regeneration. In untreated post-hatch chicks, Delta1 mRNA is abundant in a subpopulation of cells in the utricle, which undergoes continual postembryonic hair cell production, but it is absent from all cells in the basilar papilla, which is mitotically quiescent. By 3 days after drug-induced hair cell injury, Delta1 expression is highly upregulated in areas of cell proliferation in both the utricle and basilar papilla. Delta1 mRNA levels are elevated in progenitor cells during DNA synthesis and/or gap 2 phases of the cell cycle and expression is maintained in both daughter cells immediately after mitosis. Delta1 expression remains upregulated in cells that differentiate into hair cells and is downregulated in cells that do not acquire the hair cell fate. Delta1 mRNA levels return to normal by 10 days after hair cell injury. Serrate1 is expressed in both hair cells and support cells in the utricle and basilar papilla, and its expression does not change during the course of drug-induced hair cell regeneration. In contrast, Notch1 expression, which is limited to support cells in the quiescent epithelium, is increased in post-M-phase cell pairs during hair cell regeneration. This study provides initial evidence that Delta-Notch signaling may be involved in maintaining the correct cell types and patterns during postembryonic replacement of sensory epithelial cells in the chick inner ear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hair cell regeneration in the avian auditory epithelium.

Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regene...

متن کامل

A Comparative Analysis of Avian and Mammalian Inner Ear Development and Regeneration

Deafness, hearing, and balance disorders are common worldwide. The inner ear sensory hair cells are the mechanoreceptors that detect sound, head motion, and linear acceleration. Loss of or damage to hair cells is the major cause of hearing and balance disorders in humans. Nonmammalian vertebrates (birds, fish, and amphibians) have the ability to regenerate sensory hair cells, whereas mammals ca...

متن کامل

The glutamate receptor subunit delta1 is highly expressed in hair cells of the auditory and vestibular systems.

In the inner ear, fast excitatory synaptic transmission is mediated by ionotropic glutamate receptors, including AMPA, kainate, and NMDA receptors. The recently identified delta1 and delta2 glutamate receptors share low homology with the other three types, and no clear response or ligand binding has been obtained from cells transfected with delta alone or in combination with other ionotropic re...

متن کامل

The transcriptome of utricle hair cell regeneration in the avian inner ear.

Sensory hair cell loss is the major cause of hearing and balance disorders. Mammals are incapable of sustained hair cell regeneration, but lower vertebrates can regenerate these mechano-electrical transducers. We present the first comprehensive transcriptome (by mRNA-Seq) of hair cell regeneration in the chick utricle. We provide pathway and pattern annotations and correlate these with the phen...

متن کامل

Hair cell regeneration in the avian vestibular epithelium.

Research conducted in the past 4 years has shown that the avian vestibular system retains the capacity to generate hair cells postnatally. In the present paper we review information on postnatal proliferation and differentiation of hair cells in the avian vestibular system. In addition, we present preliminary accounts of recent experiments regarding regeneration of vestibular hair cells followi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 126 5  شماره 

صفحات  -

تاریخ انتشار 1999